Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 5, Pages 1021–1043
DOI: https://doi.org/10.1070/IM2013v077n05ABEH002668
(Mi im7791)
 

This article is cited in 12 scientific papers (total in 12 papers)

Representations of the Yangian of a Lie superalgebra of type $A(m,n)$

V. A. Stukopinab

a Don State Technical University
b South Mathematical Institute of VSC RAS
References:
Abstract: We describe the finite-dimensional irreducible representations of the Yangian of a Lie superalgebra of type $A(m,n)$. We formulate and prove a criterion for an irreducible representation to be finite-dimensional.
Keywords: Yangian of a Lie superalgebra, irreducible representation, Drinfel'd polynomial, simple module.
Funding agency Grant number
Russian Foundation for Basic Research 09-01-00671-a
Ministry of Education and Science of the Russian Federation П1116
14.А18.21.0356
Received: 04.05.2011
Revised: 30.10.2012
Bibliographic databases:
Document Type: Article
UDC: 512.667.7+512.554.32
MSC: Primary 17B10; Secondary 17B37, 81R10
Language: English
Original paper language: Russian
Citation: V. A. Stukopin, “Representations of the Yangian of a Lie superalgebra of type $A(m,n)$”, Izv. Math., 77:5 (2013), 1021–1043
Citation in format AMSBIB
\Bibitem{Stu13}
\by V.~A.~Stukopin
\paper Representations of the Yangian of a~Lie superalgebra of type~$A(m,n)$
\jour Izv. Math.
\yr 2013
\vol 77
\issue 5
\pages 1021--1043
\mathnet{http://mi.mathnet.ru//eng/im7791}
\crossref{https://doi.org/10.1070/IM2013v077n05ABEH002668}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137199}
\zmath{https://zbmath.org/?q=an:06236936}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77.1021S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326377700006}
\elib{https://elibrary.ru/item.asp?id=20359206}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888103971}
Linking options:
  • https://www.mathnet.ru/eng/im7791
  • https://doi.org/10.1070/IM2013v077n05ABEH002668
  • https://www.mathnet.ru/eng/im/v77/i5/p179
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:515
    Russian version PDF:188
    English version PDF:16
    References:83
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024