Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 45, Issue 2, Pages 231–253
DOI: https://doi.org/10.1070/IM1995v045n02ABEH001576
(Mi im758)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the regularity of the solutions of the Neumann problem for quasilinear parabolic systems

A. A. Arkhipova

Saint-Petersburg State University
References:
Abstract: Partial regularity is proved of the generalized solution $u\colon\mathbf\Omega\times(0,T)\to\mathbf R^N$, $\mathbf\Omega\subset\mathbf R^n$, $n>2$, $N>1$, of a quasilinear parabolic system with nonsmooth conormal derivative. It is assumed that the functions forming the system and the boundary condition have controlled orders of nonlinearities, and their singularities are anisotropic with respect to the spatial variables and time. $L_p$-estimates of the gradient of $u$ in a neighborhood of $\partial\mathbf\Omega\times(0,T)$ are preliminarily deduced.
Received: 20.10.1993
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1994, Volume 58, Issue 5, Pages 3–25
Bibliographic databases:
UDC: 517.953
MSC: 35K20, 35K60, 35B65
Language: English
Original paper language: Russian
Citation: A. A. Arkhipova, “On the regularity of the solutions of the Neumann problem for quasilinear parabolic systems”, Izv. RAN. Ser. Mat., 58:5 (1994), 3–25; Russian Acad. Sci. Izv. Math., 45:2 (1995), 231–253
Citation in format AMSBIB
\Bibitem{Ark94}
\by A.~A.~Arkhipova
\paper On~the~regularity of the solutions of the Neumann problem for quasilinear parabolic systems
\jour Izv. RAN. Ser. Mat.
\yr 1994
\vol 58
\issue 5
\pages 3--25
\mathnet{http://mi.mathnet.ru/im758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307308}
\zmath{https://zbmath.org/?q=an:0857.35054}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 2
\pages 231--253
\crossref{https://doi.org/10.1070/IM1995v045n02ABEH001576}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ08600001}
Linking options:
  • https://www.mathnet.ru/eng/im758
  • https://doi.org/10.1070/IM1995v045n02ABEH001576
  • https://www.mathnet.ru/eng/im/v58/i5/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:386
    Russian version PDF:102
    English version PDF:26
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024