Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 2, Pages 379–389
DOI: https://doi.org/10.1070/IM1996v060n02ABEH000074
(Mi im74)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hodge groups of abelian varieties with purely multiplicative reduction

A. Silverberga, Yu. G. Zarhinb

a Ohio State University
b Institute of Mathematical Problems of Biology, Russian Academy of Sciences
References:
Abstract: The main result of the paper is that if $A$ is an abelian variety over a subfield $F$ of $\mathbf C$, and $A$ has purely multiplicative reduction at a discrete valuation of $F$, then the Hodge group of $A$ is semisimple. Further, we give necessary and sufficient conditions for the Hodge group to be semisimple. We obtain bounds on certain torsion subgroups for abelian varieties which do not have purely multiplicative reduction at a given discrete valuation, and therefore obtain bounds on torsion for abelian varieties, defined over number fields, whose Hodge groups are not semisimple.
Bibliography: 26 titles.
Received: 13.06.1995
Bibliographic databases:
UDC: 513.6
MSC: Primary 14K15; Secondary 11G10
Language: English
Original paper language: English
Citation: A. Silverberg, Yu. G. Zarhin, “Hodge groups of abelian varieties with purely multiplicative reduction”, Izv. Math., 60:2 (1996), 379–389
Citation in format AMSBIB
\Bibitem{SilZar96}
\by A.~Silverberg, Yu.~G.~Zarhin
\paper Hodge groups of abelian varieties with purely multiplicative reduction
\jour Izv. Math.
\yr 1996
\vol 60
\issue 2
\pages 379--389
\mathnet{http://mi.mathnet.ru//eng/im74}
\crossref{https://doi.org/10.1070/IM1996v060n02ABEH000074}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1399421}
\zmath{https://zbmath.org/?q=an:0904.14026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VL85500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645646832}
Linking options:
  • https://www.mathnet.ru/eng/im74
  • https://doi.org/10.1070/IM1996v060n02ABEH000074
  • https://www.mathnet.ru/eng/im/v60/i2/p149
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:389
    Russian version PDF:199
    English version PDF:10
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024