Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 5, Pages 883–929
DOI: https://doi.org/10.1070/IM2006v070n05ABEH002332
(Mi im705)
 

This article is cited in 1 scientific paper (total in 1 paper)

Optimal Lyapunov metrics of expansive homeomorphisms

S. A. Dovbysh

Research Institute of Mechanics, M. V. Lomonosov Moscow State University
References:
Abstract: We sharpen the following results of Reddy, Sakai and Fried: any expansive homeomorphism of a metrizable compactum admits a Lyapunov metric compatible with the topology, and if we also assume the existence of a local product structure (that is, if the homeomorphism is an A$^{\#}$-homeomorphism in the terminology of Alekseev and Yakobson, or possesses hyperbolic canonical coordinates in the terminology of Bowen, or together with the metric compactum constitutes a Smale space in the terminology by Ruelle), then we also obtain the validity of Ruelle's technical axiom on the Lipschitz property of the homeomorphism, its inverse, and the local product structure. It is shown that any expansive homeomorphism admits a Lyapunov metric such that the homeomorphism on local stable (resp. unstable) “manifolds” is approximately representable on a small scale as a contraction (resp. expansion) with constant coefficient $\lambda_s$ (resp. $\lambda_u^{-1}$) in this metric. For A$^{\#}$-homeomorphisms, we prove that the desired metric can be approximately represented on a small scale as the direct sum of metrics corresponding to the canonical coordinates determined by the local product structure and that local “manifolds” are “flat” in some sense. It is also proved that the lower bounds for the contraction constants $\lambda_s$ and expansion constants $\lambda_u$ of A$^{\#}$-homeomorphisms are attained simultaneously for some metric that satisfies all the conditions described.
Received: 07.04.2005
Revised: 24.04.2006
Bibliographic databases:
UDC: 515.124.55+515.122.4
Language: English
Original paper language: Russian
Citation: S. A. Dovbysh, “Optimal Lyapunov metrics of expansive homeomorphisms”, Izv. Math., 70:5 (2006), 883–929
Citation in format AMSBIB
\Bibitem{Dov06}
\by S.~A.~Dovbysh
\paper Optimal Lyapunov metrics of expansive homeomorphisms
\jour Izv. Math.
\yr 2006
\vol 70
\issue 5
\pages 883--929
\mathnet{http://mi.mathnet.ru//eng/im705}
\crossref{https://doi.org/10.1070/IM2006v070n05ABEH002332}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269708}
\zmath{https://zbmath.org/?q=an:1135.37010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243560600003}
\elib{https://elibrary.ru/item.asp?id=9296568}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846623794}
Linking options:
  • https://www.mathnet.ru/eng/im705
  • https://doi.org/10.1070/IM2006v070n05ABEH002332
  • https://www.mathnet.ru/eng/im/v70/i5/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024