|
This article is cited in 9 scientific papers (total in 9 papers)
Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras
A. Yu. Pirkovskii National Research University "Higher School of Economics"
Abstract:
We prove the equation $\operatorname{w{.}dg} A=\operatorname{w{.}db} A$
for every nuclear Fréchet–Arens–Michael algebra $A$ of finite weak
bidimension, where $\operatorname{w{.}dg} A$ is the weak global dimension
and $\operatorname{w{.}db} A$ the weak bidimension of $A$. Assuming
that $A$ has a projective bimodule resolution of finite type,
we establish the estimate $\operatorname{db}A\le\operatorname{dg}A+1$,
where $\operatorname{dg} A$ is the global dimension and
$\operatorname{db} A$ the bidimension of $A$. We also prove that
$\operatorname{dg}A=\operatorname{db}A=\operatorname{w{.}dg}A=
\operatorname{w{.}db} A=n$ for all nuclear Fréchet–Arens–Michael algebras
satisfying the Van den Bergh conditions $\operatorname{VdB}(n)$.
As an application, we calculate the homological dimensions
of smooth and complex-analytic quantum tori.
Keywords:
nuclear Fréchet algebra, global dimension, bidimension, Van den Bergh isomorphisms, Hochschild homology.
Received: 19.01.2011 Revised: 20.04.2011
Citation:
A. Yu. Pirkovskii, “Homological dimensions and Van den Bergh isomorphisms for nuclear Fréchet algebras”, Izv. RAN. Ser. Mat., 76:4 (2012), 65–124; Izv. Math., 76:4 (2012), 702–759
Linking options:
https://www.mathnet.ru/eng/im6792https://doi.org/10.1070/IM2012v076n04ABEH002603 https://www.mathnet.ru/eng/im/v76/i4/p65
|
Statistics & downloads: |
Abstract page: | 653 | Russian version PDF: | 248 | English version PDF: | 34 | References: | 84 | First page: | 26 |
|