Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 6, Pages 1137–1167
DOI: https://doi.org/10.1070/IM2005v069n06ABEH002293
(Mi im666)
 

This article is cited in 2 scientific papers (total in 2 papers)

The topological type of the Fano surface of a real three-dimensional $M$-cubic

V. A. Krasnov

P. G. Demidov Yaroslavl State University
References:
Abstract: We compute the topological type of the real part of the Fano surface that parametrizes the set of real lines a non-singular real $M$-threefold. When studying Fano surfaces, we use the results and constructions in [3] on the intermediate Jacobian of a three-dimensional complex cubic. We begin by computing the topological type of the real part of the Fano surface that parametrizes the set of real lines on a singular real $M$-cubic with a single simple singular point.
Received: 27.01.2005
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2005, Volume 69, Issue 6, Pages 61–94
DOI: https://doi.org/10.4213/im666
Bibliographic databases:
UDC: 512.7
MSC: 14P25
Language: English
Original paper language: Russian
Citation: V. A. Krasnov, “The topological type of the Fano surface of a real three-dimensional $M$-cubic”, Izv. RAN. Ser. Mat., 69:6 (2005), 61–94; Izv. Math., 69:6 (2005), 1137–1167
Citation in format AMSBIB
\Bibitem{Kra05}
\by V.~A.~Krasnov
\paper The topological type of the Fano surface of a~real three-dimensional $M$-cubic
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 6
\pages 61--94
\mathnet{http://mi.mathnet.ru/im666}
\crossref{https://doi.org/10.4213/im666}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2190088}
\zmath{https://zbmath.org/?q=an:1106.14049}
\elib{https://elibrary.ru/item.asp?id=9195233}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 6
\pages 1137--1167
\crossref{https://doi.org/10.1070/IM2005v069n06ABEH002293}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235812000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645461668}
Linking options:
  • https://www.mathnet.ru/eng/im666
  • https://doi.org/10.1070/IM2005v069n06ABEH002293
  • https://www.mathnet.ru/eng/im/v69/i6/p61
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:481
    Russian version PDF:226
    English version PDF:25
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024