|
The geometry of inner spanning trees for planar polygons
A. O. Ivanovab, A. A. Tuzhilinab a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University
Abstract:
We study the geometry of minimal inner spanning trees for planar
polygons (that is, spanning trees whose edge-intervals lie in these
polygons). We construct analogues of Voronoi diagrams and
Delaunay triangulations, prove that every minimal inner spanning
tree is a subgraph of an appropriate Delaunay triangulation, and describe
the possible structure of the cells of such triangulations.
Keywords:
inner spanning tree, planar polygon, Euclidean spanning tree,
Voronoi diagram, Delaunay triangulation, Steiner ratio, characteristic domain.
Received: 28.12.2010 Revised: 08.08.2011
Citation:
A. O. Ivanov, A. A. Tuzhilin, “The geometry of inner spanning trees for planar polygons”, Izv. Math., 76:2 (2012), 215–244
Linking options:
https://www.mathnet.ru/eng/im6595https://doi.org/10.1070/IM2012v076n02ABEH002581 https://www.mathnet.ru/eng/im/v76/i2/p3
|
|