Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 5, Pages 1005–1024
DOI: https://doi.org/10.1070/IM2005v069n05ABEH002285
(Mi im658)
 

This article is cited in 1 scientific paper (total in 1 paper)

On Stieltjes integrals and Parseval's equality for multiple trigonometric series

T. P. Lukashenko
References:
Abstract: In this paper, it is proved that if a function $f$ from $\mathbb R^n$ to $\mathbb C$ is $2\pi$-periodic with respect to each variable and Lebesgue integrable on $T^n=[0,2\pi]^n$, a complex-valued additive segment function $\mathcal G$ is defined on all segments in $\mathbb R^n$ and is $2\pi$-periodic with respect to each variable, the point function $G$ corresponding to $\mathcal G$ is Lebesgue integrable on $T^n$, and the function $f$ is integrable with respect to $\overline{\mathcal G}$ in the Riemann–Stieltjes sense on all shifts of $T^n$, then Parseval's equality holds with the series not necessarily convergent, but summable by Riemann's method. Some results are also obtained on Parseval's equality for Fourier–Lebesgue–Stieltjes multiple trigonometric series.
Received: 28.10.2004
Bibliographic databases:
UDC: 517.51
Language: English
Original paper language: Russian
Citation: T. P. Lukashenko, “On Stieltjes integrals and Parseval's equality for multiple trigonometric series”, Izv. Math., 69:5 (2005), 1005–1024
Citation in format AMSBIB
\Bibitem{Luk05}
\by T.~P.~Lukashenko
\paper On Stieltjes integrals and Parseval's equality for multiple trigonometric series
\jour Izv. Math.
\yr 2005
\vol 69
\issue 5
\pages 1005--1024
\mathnet{http://mi.mathnet.ru//eng/im658}
\crossref{https://doi.org/10.1070/IM2005v069n05ABEH002285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2179418}
\zmath{https://zbmath.org/?q=an:1114.28002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234901500005}
\elib{https://elibrary.ru/item.asp?id=9182092}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645452448}
Linking options:
  • https://www.mathnet.ru/eng/im658
  • https://doi.org/10.1070/IM2005v069n05ABEH002285
  • https://www.mathnet.ru/eng/im/v69/i5/p149
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024