Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 3, Pages 623–650
DOI: https://doi.org/10.1070/IM2005v069n03ABEH000540
(Mi im644)
 

This article is cited in 71 scientific papers (total in 71 papers)

Orthogonal wavelets with compact support on locally compact Abelian groups

Yu. A. Farkov

Moscow State Geological Prospecting Academy
References:
Abstract: We extend and improve the results of W. Lang (1998) on the wavelet analysis on the Cantor dyadic group $\mathcal C$. Our construction is realized on a locally compact abelian group $G$ which is defined for an integer $p\geqslant2$ and coincides with $\mathcal C$ when $p=2$. For any integers $p,n\geqslant 2$ we determine a function $\varphi$ in $L^2(G)$ which
  • is the sum of a lacunary series by generalized Walsh functions,
  • has orthonormal “integer” shifts in $L^2(G)$,
  • satisfies “the scaling equation” with $p^n$ numerical coefficients,
  • has compact support whose Haar measure is proportional to $p^n$,
  • generates a multiresolution analysis in $L^2(G)$.

Orthogonal wavelets $\psi$ with compact supports on $G$ are defined by such functions $\varphi$. The family of these functions $\varphi$ is in many respects analogous to the well-known family of Daubechies' scaling functions. We give a method for estimating the moduli of continuity of the functions $\varphi$, which leads to sharp estimates for small $p$ and $n$. We also show that the notion of adapted multiresolution analysis recently suggested by Sendov is applicable in this situation.
Received: 05.07.2004
Bibliographic databases:
UDC: 517.58
Language: English
Original paper language: Russian
Citation: Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650
Citation in format AMSBIB
\Bibitem{Far05}
\by Yu.~A.~Farkov
\paper Orthogonal wavelets with compact support on locally compact Abelian groups
\jour Izv. Math.
\yr 2005
\vol 69
\issue 3
\pages 623--650
\mathnet{http://mi.mathnet.ru//eng/im644}
\crossref{https://doi.org/10.1070/IM2005v069n03ABEH000540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2150505}
\zmath{https://zbmath.org/?q=an:1086.43006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000231192200006}
\elib{https://elibrary.ru/item.asp?id=9176287}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645455245}
Linking options:
  • https://www.mathnet.ru/eng/im644
  • https://doi.org/10.1070/IM2005v069n03ABEH000540
  • https://www.mathnet.ru/eng/im/v69/i3/p193
  • This publication is cited in the following 71 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025