Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 2, Pages 345–363
DOI: https://doi.org/10.1070/IM2005v069n02ABEH000532
(Mi im636)
 

This article is cited in 9 scientific papers (total in 9 papers)

On holomorphic continuation of functions defined on a pencil of boundary complex lines

S. A. Imomkulov

Al-Kharezmi Urgench State University, Khorezm, Uzbekistan
References:
Abstract: We study domains of holomorphy of functions having thin singularities along a fixed direction. We prove a boundary analogue of Hartogs' theorem on the holomorphic continuation of functions of several variables that admit holomorphic continuation in one variable.
Received: 28.01.2004
Bibliographic databases:
UDC: 517.55
MSC: 32D99, 32A20
Language: English
Original paper language: Russian
Citation: S. A. Imomkulov, “On holomorphic continuation of functions defined on a pencil of boundary complex lines”, Izv. Math., 69:2 (2005), 345–363
Citation in format AMSBIB
\Bibitem{Imo05}
\by S.~A.~Imomkulov
\paper On holomorphic continuation of functions defined on a~pencil of~boundary complex lines
\jour Izv. Math.
\yr 2005
\vol 69
\issue 2
\pages 345--363
\mathnet{http://mi.mathnet.ru//eng/im636}
\crossref{https://doi.org/10.1070/IM2005v069n02ABEH000532}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2136259}
\zmath{https://zbmath.org/?q=an:1081.32006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230436900004}
\elib{https://elibrary.ru/item.asp?id=9176279}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645421340}
Linking options:
  • https://www.mathnet.ru/eng/im636
  • https://doi.org/10.1070/IM2005v069n02ABEH000532
  • https://www.mathnet.ru/eng/im/v69/i2/p125
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024