Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 5, Pages 1051–1076
DOI: https://doi.org/10.1070/IM2006v070n05ABEH002338
(Mi im633)
 

This article is cited in 2 scientific papers (total in 2 papers)

Decomposition theorems and kernel theorems for a class of functional spaces

M. A. Soloviev

P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: We prove new theorems about properties of generalized functions defined on Gelfand–Shilov spaces $S^\beta$ with $0\le\beta<1$. For each open cone $U\subset \mathbb R^d$ we define a space $S^\beta(U)$ which is related to $S^\beta(\mathbb R^d)$ and consists of entire analytic functions rapidly decreasing inside $U$ and having order of growth $\le 1/(1-\beta)$ outside the cone. Such sheaves of spaces arise naturally in non-local quantum field theory, and this motivates our investigation. We prove that the spaces $S^\beta(U)$ are complete and nuclear and establish a decomposition theorem which implies that every continuous functional defined on $S^\beta(\mathbb R^d)$ has a unique minimal closed carrier cone in $\mathbb R^d$. We also prove kernel theorems for spaces over open and closed cones and elucidate the relation between the carrier cones of multilinear forms and those of the generalized functions determined by these forms.
Received: 28.10.2005
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2006, Volume 70, Issue 5, Pages 199–224
DOI: https://doi.org/10.4213/im633
Bibliographic databases:
UDC: 517.98
Language: English
Original paper language: Russian
Citation: M. A. Soloviev, “Decomposition theorems and kernel theorems for a class of functional spaces”, Izv. RAN. Ser. Mat., 70:5 (2006), 199–224; Izv. Math., 70:5 (2006), 1051–1076
Citation in format AMSBIB
\Bibitem{Sol06}
\by M.~A.~Soloviev
\paper Decomposition theorems and kernel theorems for a class
of functional spaces
\jour Izv. RAN. Ser. Mat.
\yr 2006
\vol 70
\issue 5
\pages 199--224
\mathnet{http://mi.mathnet.ru/im633}
\crossref{https://doi.org/10.4213/im633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269714}
\zmath{https://zbmath.org/?q=an:1137.46026}
\elib{https://elibrary.ru/item.asp?id=9296574}
\transl
\jour Izv. Math.
\yr 2006
\vol 70
\issue 5
\pages 1051--1076
\crossref{https://doi.org/10.1070/IM2006v070n05ABEH002338}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243560600009}
\elib{https://elibrary.ru/item.asp?id=14748790}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846566854}
Linking options:
  • https://www.mathnet.ru/eng/im633
  • https://doi.org/10.1070/IM2006v070n05ABEH002338
  • https://www.mathnet.ru/eng/im/v70/i5/p199
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:490
    Russian version PDF:191
    English version PDF:13
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024