Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 1, Pages 177–190
DOI: https://doi.org/10.1070/IM2005v069n01ABEH000527
(Mi im630)
 

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic Lagrangian geometry: three geometric observations

N. A. Tyurin

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics
References:
Abstract: For the moduli space of Bohr–Sommerfeld Lagrangian cycles, we realize some standard geometric objects: “divisors”, special cycles, cohomology and sheaves.
Received: 18.02.2004
Bibliographic databases:
UDC: 512.723
Language: English
Original paper language: Russian
Citation: N. A. Tyurin, “Algebraic Lagrangian geometry: three geometric observations”, Izv. Math., 69:1 (2005), 177–190
Citation in format AMSBIB
\Bibitem{Tyu05}
\by N.~A.~Tyurin
\paper Algebraic Lagrangian geometry: three geometric observations
\jour Izv. Math.
\yr 2005
\vol 69
\issue 1
\pages 177--190
\mathnet{http://mi.mathnet.ru//eng/im630}
\crossref{https://doi.org/10.1070/IM2005v069n01ABEH000527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2128186}
\zmath{https://zbmath.org/?q=an:1080.53086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228925000009}
\elib{https://elibrary.ru/item.asp?id=9148962}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645555863}
Linking options:
  • https://www.mathnet.ru/eng/im630
  • https://doi.org/10.1070/IM2005v069n01ABEH000527
  • https://www.mathnet.ru/eng/im/v69/i1/p179
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024