Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2005, Volume 69, Issue 1, Pages 123–130
DOI: https://doi.org/10.1070/IM2005v069n01ABEH000523
(Mi im626)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the fundamental groups of the complements of Hurwitz curves

O. V. Kulikova

M. V. Lomonosov Moscow State University
References:
Abstract: It is proved that the commutator subgroup of the fundamental group of the complement of any plane affine irreducible Hurwitz curve (or any plane affine irreducible pseudoholomorphic curve) is finitely presented. It is shown that there is a Hurwitz curve (resp. pseudoholomorphic curve) in $\mathbb{CP}^2$ such that the fundamental group of its complement is non-Hopfian and, therefore, this group is not residually finite. We also prove the existence of an irreducible non-singular algebraic curve $C\subset\mathbb C^2$ and a bidisc $D\subset\mathbb C^2$ such that the fundamental group $\pi_1(D\setminus C)$ is non-Hopfian.
Received: 31.08.2004
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2005, Volume 69, Issue 1, Pages 125–132
DOI: https://doi.org/10.4213/im626
Bibliographic databases:
UDC: 514.756.44+512.543.16
MSC: 14F35, 20F34, 57M05
Language: English
Original paper language: Russian
Citation: O. V. Kulikova, “On the fundamental groups of the complements of Hurwitz curves”, Izv. RAN. Ser. Mat., 69:1 (2005), 125–132; Izv. Math., 69:1 (2005), 123–130
Citation in format AMSBIB
\Bibitem{Kul05}
\by O.~V.~Kulikova
\paper On the fundamental groups of the complements of Hurwitz curves
\jour Izv. RAN. Ser. Mat.
\yr 2005
\vol 69
\issue 1
\pages 125--132
\mathnet{http://mi.mathnet.ru/im626}
\crossref{https://doi.org/10.4213/im626}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2128182}
\zmath{https://zbmath.org/?q=an:1072.14022}
\elib{https://elibrary.ru/item.asp?id=9148958}
\transl
\jour Izv. Math.
\yr 2005
\vol 69
\issue 1
\pages 123--130
\crossref{https://doi.org/10.1070/IM2005v069n01ABEH000523}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228925000005}
\elib{https://elibrary.ru/item.asp?id=14612920}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645509148}
Linking options:
  • https://www.mathnet.ru/eng/im626
  • https://doi.org/10.1070/IM2005v069n01ABEH000523
  • https://www.mathnet.ru/eng/im/v69/i1/p125
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:521
    Russian version PDF:220
    English version PDF:15
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024