Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 1, Pages 141–157
DOI: https://doi.org/10.1070/IM1995v059n01ABEH000006
(Mi im6)
 

This article is cited in 1 scientific paper (total in 1 paper)

Evolution problems in the mechanics of visco-plastic media

V. S. Klimov

Orel State University
References:
Abstract: We obtain conditions that a Cauchy problem for a differential inclusion arising in the mechanics of visco-plastic media be well posed. We establish the complete continuity of shift operators along the trajectory of the inclusion. We obtain variants of the Kneser–Fukuhara theorem on the structure of an integral vortex and an analogue of the first Bogolyubov theorem on the averaging of differential equations.
Received: 10.01.1992
Bibliographic databases:
MSC: 35K22
Language: English
Original paper language: Russian
Citation: V. S. Klimov, “Evolution problems in the mechanics of visco-plastic media”, Izv. Math., 59:1 (1995), 141–157
Citation in format AMSBIB
\Bibitem{Kli95}
\by V.~S.~Klimov
\paper Evolution problems in the mechanics of visco-plastic media
\jour Izv. Math.
\yr 1995
\vol 59
\issue 1
\pages 141--157
\mathnet{http://mi.mathnet.ru//eng/im6}
\crossref{https://doi.org/10.1070/IM1995v059n01ABEH000006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1328558}
\zmath{https://zbmath.org/?q=an:0839.35134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ88700006}
Linking options:
  • https://www.mathnet.ru/eng/im6
  • https://doi.org/10.1070/IM1995v059n01ABEH000006
  • https://www.mathnet.ru/eng/im/v59/i1/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025