Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 1, Pages 163–189
DOI: https://doi.org/10.1070/IM2012v076n01ABEH002579
(Mi im5402)
 

This article is cited in 21 scientific papers (total in 21 papers)

On a class of integral equations of Urysohn type with strong non-linearity

Kh. A. Khachatryan

Institute of Mathematics, National Academy of Sciences of Armenia
References:
Abstract: We study a class of homogeneous and non-homogeneous integral equations of Urysohn type with strong non-linearity on the positive semi-axis. It is assumed that some non-linear integral operator of Wiener–Hopf–Hammerstein type is a local minorant of the corresponding Urysohn operator. Using special methods of the linear theory of convolution-type integral equations, we construct positive solutions for these classes of Urysohn equations. We also study the asymptotic behaviour of these solutions at infinity. As an auxiliary fact in the course of the proof of these assertions, we construct a one-parameter family of positive solutions for non-linear integral equations of Wiener–Hopf–Hammerstein type whose operator is a minorant for the original Urysohn operator. We give particular examples of non-linear integral equations for which all the hypotheses of the main theorems hold.
Keywords: minorant, Urysohn equation, one-parameter family of solutions, factorization.
Received: 29.09.2010
Revised: 09.03.2011
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 45G05, 45M05, 45M20
Language: English
Original paper language: Russian
Citation: Kh. A. Khachatryan, “On a class of integral equations of Urysohn type with strong non-linearity”, Izv. Math., 76:1 (2012), 163–189
Citation in format AMSBIB
\Bibitem{Kha12}
\by Kh.~A.~Khachatryan
\paper On a~class of integral equations of Urysohn type with strong non-linearity
\jour Izv. Math.
\yr 2012
\vol 76
\issue 1
\pages 163--189
\mathnet{http://mi.mathnet.ru//eng/im5402}
\crossref{https://doi.org/10.1070/IM2012v076n01ABEH002579}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2951820}
\zmath{https://zbmath.org/?q=an:1245.45005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76..163K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000300846500007}
\elib{https://elibrary.ru/item.asp?id=20358831}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857759823}
Linking options:
  • https://www.mathnet.ru/eng/im5402
  • https://doi.org/10.1070/IM2012v076n01ABEH002579
  • https://www.mathnet.ru/eng/im/v76/i1/p173
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024