Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 45, Issue 3, Pages 495–503
DOI: https://doi.org/10.1070/IM1995v045n03ABEH001668
(Mi im524)
 

This article is cited in 4 scientific papers (total in 4 papers)

Gaussian integrals and spectral theory over a local field

A. N. Kochubei

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: Vladimirov's methods for computing Gaussian integrals and constructing eigenfunctions of a fractional differentiation operator over the field of $p$-adic numbers is extended to the case of an arbitrary local field with a discrete valuation and characteristic of the residue field different from 2.
Received: 28.09.1993
Bibliographic databases:
UDC: 517.948.35+513.86
Language: English
Original paper language: Russian
Citation: A. N. Kochubei, “Gaussian integrals and spectral theory over a local field”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 495–503
Citation in format AMSBIB
\Bibitem{Koc94}
\by A.~N.~Kochubei
\paper Gaussian integrals and spectral theory over a~local field
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 3
\pages 495--503
\mathnet{http://mi.mathnet.ru//eng/im524}
\crossref{https://doi.org/10.1070/IM1995v045n03ABEH001668}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317209}
\zmath{https://zbmath.org/?q=an:0852.46061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TW91000003}
Linking options:
  • https://www.mathnet.ru/eng/im524
  • https://doi.org/10.1070/IM1995v045n03ABEH001668
  • https://www.mathnet.ru/eng/im/v58/i6/p69
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024