Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 45, Issue 3, Pages 477–493
DOI: https://doi.org/10.1070/IM1995v045n03ABEH001669
(Mi im523)
 

The Kaplan extension of the ring and Banach algebra of continuous functions as a divisible hull

V. K. Zakharov
References:
Abstract: The new algebraic structure of $c$-rings and $c$-algebras with a refinement is introduced, and on its basis the concept of a divisible hull of graduated type. These concepts are used to obtain a ring and Banach algebra characterization of the universally measurable extension $C\rightarrowtail UM$ as a certain type of divisible hull of the ring and Banach algebra $C$ of all bounded continuous functions on an Aleksandrov space (Theorem 1). For purposes of comparison a description of the Arens second dual extension $C\rightarrowtail C''$ is given without proof (Theorem 2).
Received: 29.09.1992
Bibliographic databases:
UDC: 512.552
MSC: Primary 46E25, 54D35, 54C40; Secondary 46J10, 46E30
Language: English
Original paper language: Russian
Citation: V. K. Zakharov, “The Kaplan extension of the ring and Banach algebra of continuous functions as a divisible hull”, Russian Acad. Sci. Izv. Math., 45:3 (1995), 477–493
Citation in format AMSBIB
\Bibitem{Zak94}
\by V.~K.~Zakharov
\paper The Kaplan extension of the ring and Banach algebra of continuous functions as a~divisible hull
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 3
\pages 477--493
\mathnet{http://mi.mathnet.ru//eng/im523}
\crossref{https://doi.org/10.1070/IM1995v045n03ABEH001669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1317208}
\zmath{https://zbmath.org/?q=an:0878.46040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TW91000002}
Linking options:
  • https://www.mathnet.ru/eng/im523
  • https://doi.org/10.1070/IM1995v045n03ABEH001669
  • https://www.mathnet.ru/eng/im/v58/i6/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024