Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 6, Pages 1179–1215
DOI: https://doi.org/10.1070/IM2004v068n06ABEH000515
(Mi im515)
 

This article is cited in 8 scientific papers (total in 8 papers)

Estimates for the accuracy of modelling boundary-value problems at the junction of domains with different limit dimensions

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: This paper deals with the mixed boundary-value problem for the Poisson equation at the junction of thin rods and a massive body $\Omega$ that have different stiffnesses. We suggest a new approach to the study of this singularly perturbed problem. Namely, we construct a model of the junction that gives an approximation to the solution of the original problem on the whole range of parameters $h\in(0,h_0]$ and $\gamma\in(0,+\infty)$ (the relative thickness and relative stiffness of the rods). The model contains ordinary differential equations on the line segments $\Upsilon_j$ (the axes of the rods) and the Neumann problem on the domain $\Omega$, which are combined into a single problem by imposing asymptotic conjugation conditions at the points $P^j=\overline\Upsilon_j\cap\overline\Omega$ correlating the coefficients of the expansions of solutions on $\Upsilon_j$ (as $\Upsilon_j\ni z^j\rightarrow P^j$) with those of solutions on $\Omega$ (as $\Omega\ni x\rightarrow P^j$). We obtain estimates for the accuracy of the model that are asymptotically exact. The conjugation conditions preserve the parameters $h$ and $\gamma$ but generate a regularly perturbed problem, and it is not difficult to obtain and justify asymptotics of its solutions and those of solutions of the original problem under any relation between $\gamma$ and $h$.
Received: 26.11.2003
Bibliographic databases:
UDC: 517.946
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Estimates for the accuracy of modelling boundary-value problems at the junction of domains with different limit dimensions”, Izv. Math., 68:6 (2004), 1179–1215
Citation in format AMSBIB
\Bibitem{Naz04}
\by S.~A.~Nazarov
\paper Estimates for the accuracy of modelling boundary-value problems at the
junction of domains with different limit dimensions
\jour Izv. Math.
\yr 2004
\vol 68
\issue 6
\pages 1179--1215
\mathnet{http://mi.mathnet.ru//eng/im515}
\crossref{https://doi.org/10.1070/IM2004v068n06ABEH000515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2108526}
\zmath{https://zbmath.org/?q=an:1167.35343}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227279000007}
\elib{https://elibrary.ru/item.asp?id=13446653}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746572099}
Linking options:
  • https://www.mathnet.ru/eng/im515
  • https://doi.org/10.1070/IM2004v068n06ABEH000515
  • https://www.mathnet.ru/eng/im/v68/i6/p119
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:516
    Russian version PDF:207
    English version PDF:19
    References:100
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024