Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 5, Pages 1051–1061
DOI: https://doi.org/10.1070/IM2004v068n05ABEH000508
(Mi im508)
 

This article is cited in 5 scientific papers (total in 5 papers)

A generalization of the Funk–Hecke theorem to the case of hyperbolic spaces

T. V. Shtepina
References:
Abstract: The well-known Funk–Hecke theorem states that for integral operators whose kernels depend only on the distance between points in spherical geometry and where the integral is taken over the surface of a hypersphere, every surface spherical harmonic is an eigenvector. In this paper we extend this theorem to the case of non-compact Lobachevsky spaces. We compute the corresponding eigenvalue in some physically important cases.
Received: 28.11.2003
Bibliographic databases:
UDC: 515.12
Language: English
Original paper language: Russian
Citation: T. V. Shtepina, “A generalization of the Funk–Hecke theorem to the case of hyperbolic spaces”, Izv. Math., 68:5 (2004), 1051–1061
Citation in format AMSBIB
\Bibitem{Sht04}
\by T.~V.~Shtepina
\paper A~generalization of the Funk--Hecke theorem to the case of hyperbolic spaces
\jour Izv. Math.
\yr 2004
\vol 68
\issue 5
\pages 1051--1061
\mathnet{http://mi.mathnet.ru//eng/im508}
\crossref{https://doi.org/10.1070/IM2004v068n05ABEH000508}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104855}
\zmath{https://zbmath.org/?q=an:1066.47049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226062400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746619722}
Linking options:
  • https://www.mathnet.ru/eng/im508
  • https://doi.org/10.1070/IM2004v068n05ABEH000508
  • https://www.mathnet.ru/eng/im/v68/i5/p213
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:649
    Russian version PDF:269
    English version PDF:58
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024