Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 5, Pages 1025–1049
DOI: https://doi.org/10.1070/IM2004v068n05ABEH000507
(Mi im507)
 

On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$

A. Yu. Popov
References:
Abstract: We obtain some new results on the completeness of systems of functions $f^{(n)}(\lambda_nz)$ in the space of entire functions with the topology of uniform convergence on an arbitrary compact set in $\mathbb C$. In the presence of lacunae in the Taylor expansion of the function $f(z)$, we prove the existence of bases consisting of subsystems of this form.
Received: 25.11.2003
Bibliographic databases:
UDC: 517.538.2
Language: English
Original paper language: Russian
Citation: A. Yu. Popov, “On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$”, Izv. Math., 68:5 (2004), 1025–1049
Citation in format AMSBIB
\Bibitem{Pop04}
\by A.~Yu.~Popov
\paper On the completeness of sparse subsequences of systems of functions of the form $f^{(n)}(\lambda_nz)$
\jour Izv. Math.
\yr 2004
\vol 68
\issue 5
\pages 1025--1049
\mathnet{http://mi.mathnet.ru//eng/im507}
\crossref{https://doi.org/10.1070/IM2004v068n05ABEH000507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2104854}
\zmath{https://zbmath.org/?q=an:1072.30004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226062400007}
\elib{https://elibrary.ru/item.asp?id=14427900}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746474729}
Linking options:
  • https://www.mathnet.ru/eng/im507
  • https://doi.org/10.1070/IM2004v068n05ABEH000507
  • https://www.mathnet.ru/eng/im/v68/i5/p189
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024