Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 6, Pages 1103–1122
DOI: https://doi.org/10.1070/IM1995v059n06ABEH000050
(Mi im50)
 

Oracle separation of complexity classes and lower bounds for perceptrons solving separation problems

N. K. Vereshchagin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In the first part of the paper we prove that, relative to a random oracle, the class NP contains infinite sets having no infinite Co-NP-subsets (Co-NP-immune sets). In the second part we prove that perceptrons separating Boolean matrices in which each row contains at least one 1 from matrices in which many rows (say 99% of them) have no 1's must have either large size or large order. This result partially strengthens the “one-in-a-box” theorem of Minsky and Papert [16] which states that perceptrons of small order cannot decide if every row of a given Boolean matrix has a 1. As a corollary, we prove that $\text{AM}\cap\text{Co-AM}\not\subseteq\text{PP}$ under some oracles.
Received: 28.11.1994
Revised: 22.02.1995
Bibliographic databases:
MSC: 68Q15
Language: English
Original paper language: Russian
Citation: N. K. Vereshchagin, “Oracle separation of complexity classes and lower bounds for perceptrons solving separation problems”, Izv. Math., 59:6 (1995), 1103–1122
Citation in format AMSBIB
\Bibitem{Ver95}
\by N.~K.~Vereshchagin
\paper Oracle separation of complexity classes and lower bounds for perceptrons solving separation problems
\jour Izv. Math.
\yr 1995
\vol 59
\issue 6
\pages 1103--1122
\mathnet{http://mi.mathnet.ru//eng/im50}
\crossref{https://doi.org/10.1070/IM1995v059n06ABEH000050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1481612}
\zmath{https://zbmath.org/?q=an:0872.68054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UR47200001}
Linking options:
  • https://www.mathnet.ru/eng/im50
  • https://doi.org/10.1070/IM1995v059n06ABEH000050
  • https://www.mathnet.ru/eng/im/v59/i6/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024