Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2004, Volume 68, Issue 3, Pages 543–565
DOI: https://doi.org/10.1070/IM2004v068n03ABEH000488
(Mi im488)
 

This article is cited in 35 scientific papers (total in 35 papers)

Inequalities for derivatives of rational functions on several intervals

A. L. Lukashov

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We describe a solution of the problem of finding rational trigonometric functions with fixed denominator that deviate least from zero on several subintervals of the period. The resulting representation is used to prove inequalities that estimate the derivatives of rational trigonometric and algebraic functions with fixed denominator in terms of their values on several intervals. Particular cases of these inequalities include the well-known inequalities of Videnskii, Rusak, Totik and others.
Received: 15.12.2002
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2004, Volume 68, Issue 3, Pages 115–138
DOI: https://doi.org/10.4213/im488
Bibliographic databases:
UDC: 517.5
MSC: 41A20, 41A50
Language: English
Original paper language: Russian
Citation: A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565
Citation in format AMSBIB
\Bibitem{Luk04}
\by A.~L.~Lukashov
\paper Inequalities for derivatives of rational functions on several intervals
\jour Izv. Math.
\yr 2004
\vol 68
\issue 3
\pages 543--565
\mathnet{http://mi.mathnet.ru//eng/im488}
\crossref{https://doi.org/10.1070/IM2004v068n03ABEH000488}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069196}
\zmath{https://zbmath.org/?q=an:1088.42016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224097700006}
\elib{https://elibrary.ru/item.asp?id=14552758}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-11444262950}
Linking options:
  • https://www.mathnet.ru/eng/im488
  • https://doi.org/10.1070/IM2004v068n03ABEH000488
  • https://www.mathnet.ru/eng/im/v68/i3/p115
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1287
    Russian version PDF:630
    English version PDF:42
    References:118
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024