Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 6, Pages 1213–1242
DOI: https://doi.org/10.1070/IM2003v067n06ABEH000462
(Mi im462)
 

This article is cited in 4 scientific papers (total in 4 papers)

The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain

A. Yu. Kolesov, N. Kh. Rozov
References:
Abstract: We consider the boundary-value problem
$$ u_t+i\Delta u=\varepsilon(u-d|u|^2u), \qquad u\big|_{\partial \Omega}=0, $$
in the domain $\Omega=\{(x,y)\colon 0\leqslant x\leqslant 1,0\leqslant y\leqslant 1\}$, where $u$ is a complex-valued function, $\Delta$ is the Laplace operators, $0<\varepsilon\ll1$ and $d=1+ic_0$, $c_0\in\mathbb R$. We establish that it has countably many stable solutions that are periodic in $t$. We study the question of whether this phenomenon is preserved under a change of domain or boundary conditions.
Received: 17.06.2002
Bibliographic databases:
UDC: 517.926
Language: English
Original paper language: Russian
Citation: A. Yu. Kolesov, N. Kh. Rozov, “The existence of countably many stable cycles for a generalized cubic Schrödinger equation in a planar domain”, Izv. Math., 67:6 (2003), 1213–1242
Citation in format AMSBIB
\Bibitem{KolRoz03}
\by A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper The existence of countably many stable cycles for a~generalized cubic Schr\"odinger equation in a~planar domain
\jour Izv. Math.
\yr 2003
\vol 67
\issue 6
\pages 1213--1242
\mathnet{http://mi.mathnet.ru//eng/im462}
\crossref{https://doi.org/10.1070/IM2003v067n06ABEH000462}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2032093}
\zmath{https://zbmath.org/?q=an:1067.35105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000189123100005}
\elib{https://elibrary.ru/item.asp?id=14210396}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748548415}
Linking options:
  • https://www.mathnet.ru/eng/im462
  • https://doi.org/10.1070/IM2003v067n06ABEH000462
  • https://www.mathnet.ru/eng/im/v67/i6/p137
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024