Abstract:
We study the problem of finding convergent series representations of solutions
of exterior problems for the stationary Navier–Stokes system at small
Reynolds numbers Re. Our approach enables us to treat
some cases of boundary conditions that increase as Re→0.
\Bibitem{Saz11}
\by L.~I.~Sazonov
\paper The three-dimensional stationary flow problem at small Reynolds numbers
\jour Izv. Math.
\yr 2011
\vol 75
\issue 6
\pages 1185--1214
\mathnet{http://mi.mathnet.ru/eng/im4562}
\crossref{https://doi.org/10.1070/IM2011v075n06ABEH002569}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918895}
\zmath{https://zbmath.org/?q=an:1239.35129}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75.1185S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298497200005}
\elib{https://elibrary.ru/item.asp?id=20358820}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84455199897}
Linking options:
https://www.mathnet.ru/eng/im4562
https://doi.org/10.1070/IM2011v075n06ABEH002569
https://www.mathnet.ru/eng/im/v75/i6/p99
This publication is cited in the following 1 articles:
L. I. Sazonov, “Existence of transitions between stationary regimes of the Navier–Stokes equations in the entire space”, Comput. Math. Math. Phys., 53:9 (2013), 1377–1390