Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 5, Pages 931–953
DOI: https://doi.org/10.1070/IM2003v067n05ABEH000452
(Mi im452)
 

This article is cited in 2 scientific papers (total in 2 papers)

On quasiconformally flat surfaces in Riemannian manifolds

V. M. Miklyukov
References:
Abstract: We establish two properties of $K$-quasiconformally flat hypersurfaces in general Riemannian manifolds. The first is stated in isoperimetric terms and the second in terms of the main frequency of sections of the manifold by geodesic spheres. The two conditions coincide in the two-dimensional case.
Received: 27.05.2002
Bibliographic databases:
UDC: 517.53/57
MSC: 30C65, 30C70, 35B05
Language: English
Original paper language: Russian
Citation: V. M. Miklyukov, “On quasiconformally flat surfaces in Riemannian manifolds”, Izv. Math., 67:5 (2003), 931–953
Citation in format AMSBIB
\Bibitem{Mik03}
\by V.~M.~Miklyukov
\paper On quasiconformally flat surfaces in Riemannian manifolds
\jour Izv. Math.
\yr 2003
\vol 67
\issue 5
\pages 931--953
\mathnet{http://mi.mathnet.ru//eng/im452}
\crossref{https://doi.org/10.1070/IM2003v067n05ABEH000452}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2018741}
\zmath{https://zbmath.org/?q=an:1071.53017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187798600004}
\elib{https://elibrary.ru/item.asp?id=14468718}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748689356}
Linking options:
  • https://www.mathnet.ru/eng/im452
  • https://doi.org/10.1070/IM2003v067n05ABEH000452
  • https://www.mathnet.ru/eng/im/v67/i5/p83
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:220
    English version PDF:17
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024