Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 4, Pages 797–813
DOI: https://doi.org/10.1070/IM2003v067n04ABEH000445
(Mi im445)
 

This article is cited in 3 scientific papers (total in 3 papers)

Weak solutions of linear equations of Sobolev type and semigroups of operators

V. E. Fedorov

Chelyabinsk State University
References:
Abstract: We show that there is an infinitely differentiable semigroup for the equation $L\dot u=Mu$ if the $(p,\psi(\tau))$-condition introduced in this paper holds for the pair of operators $(L,M)$. In the case when the strong $(p,\psi(\tau))$-condition holds we have found the set of one-valued solubility of the weakened Cauchy problem for this equation. Our results supplement the theory of degenerate semigroups of operators and generalize in part the theorem on the generators of semigroups of class $(A)_\infty$ to the case of degenerate semigroups. We investigate the kernels and images of the semigroups constructed and consider various examples of operators for which the $(p,\psi(\tau))$-condition (the strong $(p,\psi(\tau))$-condition) holds.
Received: 06.03.2000
Bibliographic databases:
UDC: 517.9
Language: English
Original paper language: Russian
Citation: V. E. Fedorov, “Weak solutions of linear equations of Sobolev type and semigroups of operators”, Izv. Math., 67:4 (2003), 797–813
Citation in format AMSBIB
\Bibitem{Fed03}
\by V.~E.~Fedorov
\paper Weak solutions of linear equations of Sobolev type and semigroups of operators
\jour Izv. Math.
\yr 2003
\vol 67
\issue 4
\pages 797--813
\mathnet{http://mi.mathnet.ru//eng/im445}
\crossref{https://doi.org/10.1070/IM2003v067n04ABEH000445}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2001767}
\zmath{https://zbmath.org/?q=an:1090.47027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186267800005}
\elib{https://elibrary.ru/item.asp?id=14364789}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748689575}
Linking options:
  • https://www.mathnet.ru/eng/im445
  • https://doi.org/10.1070/IM2003v067n04ABEH000445
  • https://www.mathnet.ru/eng/im/v67/i4/p171
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025