Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 2, Pages 365–376
DOI: https://doi.org/10.1070/IM2003v067n02ABEH000430
(Mi im430)
 

This article is cited in 2 scientific papers (total in 3 papers)

Delzant models of moduli spaces

A. N. Tyurin

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: For every genus $g$ we construct a smooth, complete, rational polarized algebraic variety $(DM_g,H)$ together with an effective normal crossing divisor $D=\cup D_i$ such that for every moduli space $M_\Sigma(2,0)$ of semistable topologically trivial vector bundles of rank 2 on an algebraic curve $\Sigma$ of genus $g$ there is a holomorphic isomorphism $f\colon M_\Sigma(2,0)\setminus K_g\to DM_g \setminus D$, where $K_g$ is the Kummer variety of the Jacobian of $\Sigma$, sending the polarization of $DM_g$ to the theta divisor of the moduli space. This isomorphism induces isomorphisms of the spaces $H^0(M_\Sigma(2,0),\Theta^k)$ and $H^0(DM_g,H^k)$.
Received: 10.09.2001
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2003, Volume 67, Issue 2, Pages 167–180
DOI: https://doi.org/10.4213/im430
Bibliographic databases:
UDC: 512.723
MSC: 14H60, 53D20
Language: English
Original paper language: Russian
Citation: A. N. Tyurin, “Delzant models of moduli spaces”, Izv. RAN. Ser. Mat., 67:2 (2003), 167–180; Izv. Math., 67:2 (2003), 365–376
Citation in format AMSBIB
\Bibitem{Tyu03}
\by A.~N.~Tyurin
\paper Delzant models of moduli spaces
\jour Izv. RAN. Ser. Mat.
\yr 2003
\vol 67
\issue 2
\pages 167--180
\mathnet{http://mi.mathnet.ru/im430}
\crossref{https://doi.org/10.4213/im430}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1972996}
\zmath{https://zbmath.org/?q=an:1081.14047}
\transl
\jour Izv. Math.
\yr 2003
\vol 67
\issue 2
\pages 365--376
\crossref{https://doi.org/10.1070/IM2003v067n02ABEH000430}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185541900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748680948}
Linking options:
  • https://www.mathnet.ru/eng/im430
  • https://doi.org/10.1070/IM2003v067n02ABEH000430
  • https://www.mathnet.ru/eng/im/v67/i2/p167
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:508
    Russian version PDF:256
    English version PDF:11
    References:39
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024