Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 145–159
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000422
(Mi im422)
 

This article is cited in 104 scientific papers (total in 104 papers)

Quantum communication complexity of symmetric predicates

A. A. Razborov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We completely (that is, up to a logarithmic factor) characterize the bounded-error quantum communication complexity of every predicate $f(x,y)$ $x,y\subseteq [n]$) depending only on $|x\cap y|$. More precisely, given a predicate $D$ on $\{0,1,\dots,n\}$, we put
\begin{align*} \ell_0(D)&\overset{\mathrm{def}}{=}\max\{\ell\mid 1\leqslant\ell\leqslant n/2\land D(\ell)\not\equiv D(\ell-1)\}, \\ \ell_1(D)&\overset{\mathrm{def}}{=}\max\{n-\ell\mid n/2\leqslant\ell<n\land D(\ell) \not\equiv D(\ell+1)\}. \end{align*}
Then the bounded-error quantum communication complexity of $f_D(x,y)=D(|x\cap y|)$ is equal to $\sqrt{n\ell_0(D)}+\ell_1(D)$ (up to a logarithmic factor). In particular, the complexity of the set disjointness predicate is equal to $\Omega(\sqrt n\,)$. This result holds both in the model with prior entanglement and in the model without it.
Received: 29.04.2002
Bibliographic databases:
Document Type: Article
UDC: 510.52
MSC: 03D15, 68Q15, 81P68
Language: English
Original paper language: Russian
Citation: A. A. Razborov, “Quantum communication complexity of symmetric predicates”, Izv. Math., 67:1 (2003), 145–159
Citation in format AMSBIB
\Bibitem{Raz03}
\by A.~A.~Razborov
\paper Quantum communication complexity of symmetric predicates
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 145--159
\mathnet{http://mi.mathnet.ru//eng/im422}
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957920}
\zmath{https://zbmath.org/?q=an:1088.68052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748500069}
Linking options:
  • https://www.mathnet.ru/eng/im422
  • https://doi.org/10.1070/IM2003v067n01ABEH000422
  • https://www.mathnet.ru/eng/im/v67/i1/p159
  • This publication is cited in the following 104 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024