Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 3, Pages 471–505
DOI: https://doi.org/10.1070/IM2011v075n03ABEH002541
(Mi im4113)
 

This article is cited in 18 scientific papers (total in 18 papers)

On the spectrum of a two-dimensional periodic operator with a small localized perturbation

D. I. Borisov

Bashkir State Pedagogical University
References:
Abstract: We consider a two-dimensional periodic self-adjoint second-order differential operator on the plane with a small localized perturbation. The perturbation is given by an arbitrary (not necessarily symmetric) operator. It is localized in the sense that it acts on a pair of weighted Sobolev spaces and sends functions of sufficiently rapid growth to functions of sufficiently rapid decay. By studying the spectrum of the perturbed operator, we establish that the essential spectrum is stable, the residual spectrum is absent, and the set of isolated eigenvalues is discrete. We obtain necessary and sufficient conditions for the existence of new eigenvalues arising from the ends of lacunae in the essential spectrum. In the case when such eigenvalues exist, we construct the first terms of asymptotic expansions of these eigenvalues and the corresponding eigenfunctions.
Keywords: non-selfadjoint operator, perturbation, zone spectrum, eigenvalue, asymptotics.
Received: 03.05.2009
Revised: 15.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 35C20, 35J10
Language: English
Original paper language: Russian
Citation: D. I. Borisov, “On the spectrum of a two-dimensional periodic operator with a small localized perturbation”, Izv. Math., 75:3 (2011), 471–505
Citation in format AMSBIB
\Bibitem{Bor11}
\by D.~I.~Borisov
\paper On the spectrum of a~two-dimensional periodic operator with a~small localized perturbation
\jour Izv. Math.
\yr 2011
\vol 75
\issue 3
\pages 471--505
\mathnet{http://mi.mathnet.ru//eng/im4113}
\crossref{https://doi.org/10.1070/IM2011v075n03ABEH002541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847781}
\zmath{https://zbmath.org/?q=an:1233.35066}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..471B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292303800002}
\elib{https://elibrary.ru/item.asp?id=20358791}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053525667}
Linking options:
  • https://www.mathnet.ru/eng/im4113
  • https://doi.org/10.1070/IM2011v075n03ABEH002541
  • https://www.mathnet.ru/eng/im/v75/i3/p29
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:757
    Russian version PDF:229
    English version PDF:22
    References:98
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024