|
This article is cited in 3 scientific papers (total in 3 papers)
On the average number of power residues modulo a composite number
M. A. Korolev Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We study the behaviour of the quantities $a_{n}(q)$ and $b_{n}(q)$, that is, the number of $n$th power residues in the reduced and complete residue systems modulo a composite number $q$, respectively, where $n\geqslant2$ is an arbitrary fixed number. In particular, we prove asymptotic formulae for the sum functions $A_{n}(x)$ and $B_{n}(x)$ of these quantities.
Keywords:
power residues, average number of power residues, Lehmer–Landau problem.
Received: 28.04.2009
Citation:
M. A. Korolev, “On the average number of power residues modulo a composite number”, Izv. RAN. Ser. Mat., 74:6 (2010), 127–156; Izv. Math., 74:6 (2010), 1225–1254
Linking options:
https://www.mathnet.ru/eng/im4110https://doi.org/10.1070/IM2010v074n06ABEH002522 https://www.mathnet.ru/eng/im/v74/i6/p127
|
Statistics & downloads: |
Abstract page: | 560 | Russian version PDF: | 218 | English version PDF: | 24 | References: | 51 | First page: | 18 |
|