Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 6, Pages 1225–1254
DOI: https://doi.org/10.1070/IM2010v074n06ABEH002522
(Mi im4110)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the average number of power residues modulo a composite number

M. A. Korolev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We study the behaviour of the quantities $a_{n}(q)$ and $b_{n}(q)$, that is, the number of $n$th power residues in the reduced and complete residue systems modulo a composite number $q$, respectively, where $n\geqslant2$ is an arbitrary fixed number. In particular, we prove asymptotic formulae for the sum functions $A_{n}(x)$ and $B_{n}(x)$ of these quantities.
Keywords: power residues, average number of power residues, Lehmer–Landau problem.
Received: 28.04.2009
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2010, Volume 74, Issue 6, Pages 127–156
DOI: https://doi.org/10.4213/im4110
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: Primary 11A15; Secondary 11H60
Language: English
Original paper language: Russian
Citation: M. A. Korolev, “On the average number of power residues modulo a composite number”, Izv. RAN. Ser. Mat., 74:6 (2010), 127–156; Izv. Math., 74:6 (2010), 1225–1254
Citation in format AMSBIB
\Bibitem{Kor10}
\by M.~A.~Korolev
\paper On the average number of power residues modulo a~composite number
\jour Izv. RAN. Ser. Mat.
\yr 2010
\vol 74
\issue 6
\pages 127--156
\mathnet{http://mi.mathnet.ru/im4110}
\crossref{https://doi.org/10.4213/im4110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2779781}
\zmath{https://zbmath.org/?q=an:1222.11116}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74.1225K}
\elib{https://elibrary.ru/item.asp?id=20358772}
\transl
\jour Izv. Math.
\yr 2010
\vol 74
\issue 6
\pages 1225--1254
\crossref{https://doi.org/10.1070/IM2010v074n06ABEH002522}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287279100005}
\elib{https://elibrary.ru/item.asp?id=16976703}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651366335}
Linking options:
  • https://www.mathnet.ru/eng/im4110
  • https://doi.org/10.1070/IM2010v074n06ABEH002522
  • https://www.mathnet.ru/eng/im/v74/i6/p127
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:560
    Russian version PDF:218
    English version PDF:24
    References:51
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024