Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 3, Pages 589–602
DOI: https://doi.org/10.1070/IM2011v075n03ABEH002545
(Mi im4102)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the number of components of a three-dimensional maximal intersection of three real quadrics

V. A. Krasnov

P. G. Demidov Yaroslavl State University
References:
Abstract: We consider non-singular intersections of three real five-dimensional quadrics. For brevity they are referred to as real three-dimensional triquadrics. We prove the existence of real three-dimensional $M$-triquadrics with $k$ components, where $k$ is any integer in the range $1\leqslant k\leqslant 14$.
Keywords: triquadrics, maximal varieties, spectral curve, theta-characteristics, index function.
Received: 26.03.2009
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2011, Volume 75, Issue 3, Pages 147–160
DOI: https://doi.org/10.4213/im4102
Bibliographic databases:
UDC: 512.7
MSC: 14P25, 14N25, 14J30
Language: English
Original paper language: Russian
Citation: V. A. Krasnov, “On the number of components of a three-dimensional maximal intersection of three real quadrics”, Izv. RAN. Ser. Mat., 75:3 (2011), 147–160; Izv. Math., 75:3 (2011), 589–602
Citation in format AMSBIB
\Bibitem{Kra11}
\by V.~A.~Krasnov
\paper On the number of components of a three-dimensional maximal intersection of three real quadrics
\jour Izv. RAN. Ser. Mat.
\yr 2011
\vol 75
\issue 3
\pages 147--160
\mathnet{http://mi.mathnet.ru/im4102}
\crossref{https://doi.org/10.4213/im4102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2847785}
\zmath{https://zbmath.org/?q=an:1256.14062}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..589K}
\elib{https://elibrary.ru/item.asp?id=20358795}
\transl
\jour Izv. Math.
\yr 2011
\vol 75
\issue 3
\pages 589--602
\crossref{https://doi.org/10.1070/IM2011v075n03ABEH002545}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292303800006}
\elib{https://elibrary.ru/item.asp?id=18008156}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053535537}
Linking options:
  • https://www.mathnet.ru/eng/im4102
  • https://doi.org/10.1070/IM2011v075n03ABEH002545
  • https://www.mathnet.ru/eng/im/v75/i3/p147
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:481
    Russian version PDF:170
    English version PDF:18
    References:73
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024