Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1995, Volume 59, Issue 5, Pages 935–948
DOI: https://doi.org/10.1070/IM1995v059n05ABEH000041
(Mi im41)
 

This article is cited in 3 scientific papers (total in 3 papers)

A generalization of the method of least squares for operator equations in some Frechet spaces

D. N. Zarnadze

Muskhelishvili Institute of Computational Mathematics
References:
Abstract: The classical method of least squares is extended to equations with an operator between Frechet spaces. Approximate solutions are obtained by minimizing the discrepancy relative to a metric, which in the Hilbert space case coincides with the metric induced by the scalar product. The convergence of a sequence of approximate solutions to the exact solution is proved. A concrete realization of the results obtained is given in the case of continuously invertible and so-called tamely invertible operators that map Frechet spaces of power series of finite and infinite type, Frechet spaces of rapidly decreasing sequences and the Frechet spaces of analytic functions given in Stein's monograph to themselves.
Received: 25.07.1994
Bibliographic databases:
MSC: 46A06, 41A35
Language: English
Original paper language: Russian
Citation: D. N. Zarnadze, “A generalization of the method of least squares for operator equations in some Frechet spaces”, Izv. Math., 59:5 (1995), 935–948
Citation in format AMSBIB
\Bibitem{Zar95}
\by D.~N.~Zarnadze
\paper A~generalization of the method of least squares for operator equations in some Frechet spaces
\jour Izv. Math.
\yr 1995
\vol 59
\issue 5
\pages 935--948
\mathnet{http://mi.mathnet.ru//eng/im41}
\crossref{https://doi.org/10.1070/IM1995v059n05ABEH000041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1360634}
\zmath{https://zbmath.org/?q=an:0880.46001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995UH54100004}
Linking options:
  • https://www.mathnet.ru/eng/im41
  • https://doi.org/10.1070/IM1995v059n05ABEH000041
  • https://www.mathnet.ru/eng/im/v59/i5/p59
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:356
    Russian version PDF:147
    English version PDF:11
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024