Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2011, Volume 75, Issue 4, Pages 837–868
DOI: https://doi.org/10.1070/IM2011v075n04ABEH002554
(Mi im4061)
 

This article is cited in 5 scientific papers (total in 5 papers)

Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method

V. R. Fatalov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove results on exact asymptotics as $n\to\infty$ for the expectations $\mathsf{E}_a \exp\bigl\{-\theta\sum_{k=0}^{n-1} g(X_k)\bigr\}$ and probabilities $\mathsf{P}_a\bigl\{\frac{1}{n}\sum_{k=0}^{n-1}g(X_k)<d\bigr\}$, where $\{\xi_k\}_{k=1}^\infty $ is a sequence of independent identically Laplace-distributed random variables, $X_n=X_0+\sum_{k=1}^n \xi_k$, $n\geqslant 1$, is the corresponding random walk on $\mathbb{R}$, $g(x)$ is a positive continuous function satisfying certain conditions, and $d>0$, $\theta>0$, $a\in\mathbb{R}$ are fixed numbers. Our results are obtained using a new method which is developed in this paper: the Laplace method for the occupation time of discrete-time Markov chains. For $g(x)$ one can take $|x|^p$, $\log(|x|^p+1)$, $p>0$, $|x|\log(|x|+1)$, or $e^{\alpha |x|}-1$, $0<\alpha<1/2$, $x\in\mathbb{R}$, for example. We give a detailed treatment of the case when $g(x)=|x|$ using Bessel functions to make explicit calculations.
Keywords: large deviations, Markov chains, Laplace method, action functional, occupation time, Bessel function.
Received: 25.11.2008
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: 60F10, 60H05, 60J10
Language: English
Original paper language: Russian
Citation: V. R. Fatalov, “Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method”, Izv. Math., 75:4 (2011), 837–868
Citation in format AMSBIB
\Bibitem{Fat11}
\by V.~R.~Fatalov
\paper Exact asymptotics of probabilities of large deviations for Markov chains: the Laplace method
\jour Izv. Math.
\yr 2011
\vol 75
\issue 4
\pages 837--868
\mathnet{http://mi.mathnet.ru//eng/im4061}
\crossref{https://doi.org/10.1070/IM2011v075n04ABEH002554}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2866190}
\zmath{https://zbmath.org/?q=an:1235.60019}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011IzMat..75..837F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000294215000007}
\elib{https://elibrary.ru/item.asp?id=20358805}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80053461857}
Linking options:
  • https://www.mathnet.ru/eng/im4061
  • https://doi.org/10.1070/IM2011v075n04ABEH002554
  • https://www.mathnet.ru/eng/im/v75/i4/p189
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:628
    Russian version PDF:187
    English version PDF:24
    References:82
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024