Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 5, Pages 1047–1055
DOI: https://doi.org/10.1070/IM2002v066n05ABEH000405
(Mi im405)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the closures of orbits of fourth order matrix pencils

D. D. Pervouchine
References:
Abstract: We state a simple criterion for nilpotency of an $n\times n$ matrix pencil with respect to the action of $\operatorname{SL}_n(\mathbb C)\times \operatorname{SL}_n(\mathbb C) \times\operatorname{SL}_2(\mathbb C)$. We explicitly classify the orbits of matrix pencils for $n=4$ and describe the hierarchy of closures of nilpotent orbits. We also prove that the algebra of invariants of the action of $\operatorname{SL}_n(\mathbb C)\times \operatorname{SL}_n(\mathbb C)\times\operatorname{SL}_2(\mathbb C)$ on $\mathbb C_n\otimes\mathbb C_n\otimes\mathbb C_2$ is naturally isomorphic to the algebra of invariants of binary forms of degree $n$ with respect to the action of $\operatorname{SL}_2(\mathbb C)$.
Received: 27.03.2001
Revised: 08.05.2002
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2002, Volume 66, Issue 5, Pages 183–192
DOI: https://doi.org/10.4213/im405
Bibliographic databases:
UDC: 512.643+512.813+512.815
MSC: 14L30, 15A72, 20G05
Language: English
Original paper language: Russian
Citation: D. D. Pervouchine, “On the closures of orbits of fourth order matrix pencils”, Izv. RAN. Ser. Mat., 66:5 (2002), 183–192; Izv. Math., 66:5 (2002), 1047–1055
Citation in format AMSBIB
\Bibitem{Per02}
\by D.~D.~Pervouchine
\paper On the closures of orbits of fourth order matrix pencils
\jour Izv. RAN. Ser. Mat.
\yr 2002
\vol 66
\issue 5
\pages 183--192
\mathnet{http://mi.mathnet.ru/im405}
\crossref{https://doi.org/10.4213/im405}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1965939}
\zmath{https://zbmath.org/?q=an:1075.14047}
\transl
\jour Izv. Math.
\yr 2002
\vol 66
\issue 5
\pages 1047--1055
\crossref{https://doi.org/10.1070/IM2002v066n05ABEH000405}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4544240544}
Linking options:
  • https://www.mathnet.ru/eng/im405
  • https://doi.org/10.1070/IM2002v066n05ABEH000405
  • https://www.mathnet.ru/eng/im/v66/i5/p183
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:390
    Russian version PDF:218
    English version PDF:33
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024