Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 5, Pages 1035–1046
DOI: https://doi.org/10.1070/IM2002v066n05ABEH000404
(Mi im404)
 

This article is cited in 12 scientific papers (total in 12 papers)

The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: We consider the tensor product of a unitary representation of $G=\mathrm{SL}_2(\mathbb R)$ with a highest weight and the complex-conjugate representation with a lowest weight. The representation space is acted upon by the direct product $G\times G$. We decompose the resulting representation into a direct integral with respect to the diagonal subgroup $G\subset G\times G$. This direct integral is realized as the $L^2$ space on the product of a circle with coordinate $\phi\in[0,2\pi)$ and the semiline $s\geqslant 0$, where $s$ enumerates unitary representations of $G$ of the principal series.
We get explicit formulae for the action of the Lie algebra $\mathfrak{sl}_2\oplus\mathfrak{sl}_2$ on this direct integral. It turns out that the representation operators are second order differential operators with respect to $\phi$ and second order difference operators with respect to $s$, and the difference operators are expressed in terms of the shift $s\mapsto s+i$ in the imaginary direction.
Received: 06.04.2001
Bibliographic databases:
UDC: 519.46
MSC: 22E46, 43A85
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction”, Izv. Math., 66:5 (2002), 1035–1046
Citation in format AMSBIB
\Bibitem{Ner02}
\by Yu.~A.~Neretin
\paper The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction
\jour Izv. Math.
\yr 2002
\vol 66
\issue 5
\pages 1035--1046
\mathnet{http://mi.mathnet.ru//eng/im404}
\crossref{https://doi.org/10.1070/IM2002v066n05ABEH000404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1965938}
\zmath{https://zbmath.org/?q=an:1064.22005}
\elib{https://elibrary.ru/item.asp?id=14470919}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748507383}
Linking options:
  • https://www.mathnet.ru/eng/im404
  • https://doi.org/10.1070/IM2002v066n05ABEH000404
  • https://www.mathnet.ru/eng/im/v66/i5/p171
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:477
    Russian version PDF:207
    English version PDF:19
    References:95
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024