Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 3, Pages 631–657
DOI: https://doi.org/10.1070/IM2002v066n03ABEH000392
(Mi im392)
 

$I$-stable ideals

D. A. Shakin

M. V. Lomonosov Moscow State University
References:
Abstract: We define the concept of $I$-stable ideals in the ring of commutative polynomials over a field, generalizing the so-called stable ideals, which arise as ideals of higher terms under general linear changes of variables. The interest in ideals of this type is motivated by the fact that certain problems concerning homogeneous ideals (for example, the problem of obtaining upper estimates for the graded Betti numbers) can be reduced to the study of stable ideals. $I$-stable ideals retain many interesting properties of stable ideals. In particular, the minimal resolutions of $I$-stable ideals constructed in this paper enable us to obtain an explicit formula for the graded Betti numbers, which turn out to be independent of the characteristic of the ground field. Factor rings by $I$-stable ideals generated by monomials of degree $\geqslant 2$ are Golod rings. We also consider other analogues of stable ideals (strongly and weakly $I$-stable ideals) and give conditions sufficient for the factor ring by an $I$-stable ideal to be Cohen–Macaulay or Gorenstein.
Received: 18.04.2001
Bibliographic databases:
UDC: 512.664.2+512.714
Language: English
Original paper language: Russian
Citation: D. A. Shakin, “$I$-stable ideals”, Izv. Math., 66:3 (2002), 631–657
Citation in format AMSBIB
\Bibitem{Sha02}
\by D.~A.~Shakin
\paper $I$-stable ideals
\jour Izv. Math.
\yr 2002
\vol 66
\issue 3
\pages 631--657
\mathnet{http://mi.mathnet.ru//eng/im392}
\crossref{https://doi.org/10.1070/IM2002v066n03ABEH000392}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1921814}
\zmath{https://zbmath.org/?q=an:1078.13514}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748493006}
Linking options:
  • https://www.mathnet.ru/eng/im392
  • https://doi.org/10.1070/IM2002v066n03ABEH000392
  • https://www.mathnet.ru/eng/im/v66/i3/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024