Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2002, Volume 66, Issue 3, Pages 611–629
DOI: https://doi.org/10.1070/IM2002v066n03ABEH000391
(Mi im391)
 

This article is cited in 7 scientific papers (total in 7 papers)

Dynamical correspondence in algebraic Lagrangian geometry

N. A. Tyurin

Joint Institute for Nuclear Research
References:
Abstract: In this paper, which is a continuation of [12], we develop the idea of applying Abelian Lagrangian algebraic geometry (see [3], [4], [10], [11]) to geometric quantization. The Dirac correspondence principle holds for this ALG(a)-quantization. The known models of geometric quantization involving the choice of real or complex polarizations are presented as reductions (or linearizations) of the proposed quantization. This enables us to link the results of known constructions that use polarizations.
Received: 25.01.2002
Bibliographic databases:
UDC: 512.7+514.7+514.8
MSC: 53D50, 53C15
Language: English
Original paper language: Russian
Citation: N. A. Tyurin, “Dynamical correspondence in algebraic Lagrangian geometry”, Izv. Math., 66:3 (2002), 611–629
Citation in format AMSBIB
\Bibitem{Tyu02}
\by N.~A.~Tyurin
\paper Dynamical correspondence in algebraic Lagrangian geometry
\jour Izv. Math.
\yr 2002
\vol 66
\issue 3
\pages 611--629
\mathnet{http://mi.mathnet.ru//eng/im391}
\crossref{https://doi.org/10.1070/IM2002v066n03ABEH000391}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1921813}
\zmath{https://zbmath.org/?q=an:1056.53051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844475171}
Linking options:
  • https://www.mathnet.ru/eng/im391
  • https://doi.org/10.1070/IM2002v066n03ABEH000391
  • https://www.mathnet.ru/eng/im/v66/i3/p175
    Erratum
    This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:448
    Russian version PDF:251
    English version PDF:31
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024