Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1956, Volume 20, Issue 3, Pages 337–376 (Mi im3760)  

This article is cited in 1 scientific paper (total in 1 paper)

On the solution of the problem of Cauchy for the equation $\Delta u-q(x_1,x_2,\dots,x_n)u=\dfrac{\partial^2u}{\partial t^2}$ according to the method of Sobolev

B. M. Levitan
Received: 28.12.1954
Bibliographic databases:
Language: Russian
Citation: B. M. Levitan, “On the solution of the problem of Cauchy for the equation $\Delta u-q(x_1,x_2,\dots,x_n)u=\dfrac{\partial^2u}{\partial t^2}$ according to the method of Sobolev”, Izv. Math., 20:3 (1956)
Citation in format AMSBIB
\Bibitem{Lev56}
\by B.~M.~Levitan
\paper On the solution of the problem of Cauchy for the equation $\Delta u-q(x_1,x_2,\dots,x_n)u=\dfrac{\partial^2u}{\partial t^2}$ according to the method of Sobolev
\jour Izv. Math.
\yr 1956
\vol 20
\issue 3
\mathnet{http://mi.mathnet.ru//eng/im3760}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=80844}
\zmath{https://zbmath.org/?q=an:0070.31701}
Linking options:
  • https://www.mathnet.ru/eng/im3760
  • https://www.mathnet.ru/eng/im/v20/i3/p337
    Erratum
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024