Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 5, Pages 993–1022
DOI: https://doi.org/10.1070/IM2010v074n05ABEH002513
(Mi im3562)
 

This article is cited in 1 scientific paper (total in 1 paper)

Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$

P. A. Terekhin

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We prove that there are no linear algorithms of affine synthesis for affine systems in the Lebesgue space $L^1[0,1]$ with respect to the model space $\ell^1$, although the corresponding affine synthesis problem has a positive solution under the most general assumptions. At the same time, by imposing additional conditions on the generating function of the affine system, we can give an explicit linear algorithm of affine synthesis in the Lebesgue space when the model space is that of the coefficients of the system. This linear algorithm generalizes the Fourier–Haar expansion into orthogonal series.
Keywords: affine system, affine synthesis, frames in Banach spaces, representation system, Fourier–Haar series, primary space.
Received: 05.08.2008
Bibliographic databases:
Document Type: Article
UDC: 517.51+517.98
Language: English
Original paper language: Russian
Citation: P. A. Terekhin, “Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$”, Izv. Math., 74:5 (2010), 993–1022
Citation in format AMSBIB
\Bibitem{Ter10}
\by P.~A.~Terekhin
\paper Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$
\jour Izv. Math.
\yr 2010
\vol 74
\issue 5
\pages 993--1022
\mathnet{http://mi.mathnet.ru//eng/im3562}
\crossref{https://doi.org/10.1070/IM2010v074n05ABEH002513}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2757902}
\zmath{https://zbmath.org/?q=an:1206.41007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..993T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000285022600003}
\elib{https://elibrary.ru/item.asp?id=20358763}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78049349871}
Linking options:
  • https://www.mathnet.ru/eng/im3562
  • https://doi.org/10.1070/IM2010v074n05ABEH002513
  • https://www.mathnet.ru/eng/im/v74/i5/p115
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:678
    Russian version PDF:278
    English version PDF:39
    References:66
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024