Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1953, Volume 17, Issue 6, Pages 485–498 (Mi im3481)  

This article is cited in 2 scientific papers (total in 2 papers)

On the representation of natural numbers as a sum of terms of the form $\dfrac{x(x+1)\dotsb(x+n-1)}{n!}$

V. I. Nechaev
Full-text PDF (828 kB) Citations (2)
Received: 18.11.1953
Bibliographic databases:
Language: Russian
Citation: V. I. Nechaev, “On the representation of natural numbers as a sum of terms of the form $\dfrac{x(x+1)\dotsb(x+n-1)}{n!}$”, Izv. Akad. Nauk SSSR Ser. Mat., 17:6 (1953), 485–498
Citation in format AMSBIB
\Bibitem{Nec53}
\by V.~I.~Nechaev
\paper On the representation of natural numbers as a sum of terms of the form $\dfrac{x(x+1)\dotsb(x+n-1)}{n!}$
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1953
\vol 17
\issue 6
\pages 485--498
\mathnet{http://mi.mathnet.ru/im3481}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=59941}
\zmath{https://zbmath.org/?q=an:0052.04005}
Linking options:
  • https://www.mathnet.ru/eng/im3481
  • https://www.mathnet.ru/eng/im/v17/i6/p485
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :110
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024