Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 3, Pages 543–556
DOI: https://doi.org/10.1070/IM2001v065n03ABEH000338
(Mi im338)
 

This article is cited in 12 scientific papers (total in 12 papers)

Hirzebruch genera of manifolds with torus action

T. E. Panov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A quasitoric manifold is a smooth $2n$-manifold $M^{2n}$ with an action of the compact torus $T^n$ such that the action is locally isomorphic to the standard action of $T^n$ on $\mathbb C^n$ and the orbit space is diffeomorphic, as a manifold with corners, to a simple polytope $P^n$. The name refers to the fact that topological and combinatorial properties of quasitoric manifolds are similar to those of non-singular algebraic toric varieties (or toric manifolds). Unlike toric varieties, quasitoric manifolds may fail to be complex. However, they always admit a stably (or weakly almost) complex structure, and their cobordism classes generate the complex cobordism ring. Buchstaber and Ray have recently shown that the stably complex structure on a quasitoric manifold is determined in purely combinatorial terms, namely, by an orientation of the polytope and a function from the set of codimension-one faces of the polytope to primitive vectors of the integer lattice. We calculate the $\chi_y$-genus of a quasitoric manifold with a fixed stably complex structure in terms of the corresponding combinatorial data. In particular, this gives explicit formulae for the classical Todd genus and the signature. We also compare our results with well-known facts in the theory of toric varieties.
Received: 25.02.2000
Bibliographic databases:
MSC: Primary 57R20, 57S25; Secondary 14M25, 58G10
Language: English
Original paper language: Russian
Citation: T. E. Panov, “Hirzebruch genera of manifolds with torus action”, Izv. Math., 65:3 (2001), 543–556
Citation in format AMSBIB
\Bibitem{Pan01}
\by T.~E.~Panov
\paper Hirzebruch genera of manifolds with torus action
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 543--556
\mathnet{http://mi.mathnet.ru//eng/im338}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853368}
\zmath{https://zbmath.org/?q=an:1006.57009}
\elib{https://elibrary.ru/item.asp?id=13372110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746812334}
Linking options:
  • https://www.mathnet.ru/eng/im338
  • https://doi.org/10.1070/IM2001v065n03ABEH000338
  • https://www.mathnet.ru/eng/im/v65/i3/p123
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024