|
This article is cited in 36 scientific papers (total in 36 papers)
Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential
V. A. Vinokurov, V. A. Sadovnichiia a M. V. Lomonosov Moscow State University
Abstract:
For the Sturm–Liouville boundary-value problem on a segment we construct asymptotics for $s_n=\sqrt{\lambda_n}$, where $\lambda_n$ are the eigenvalues, and for the normalized eigenfunctions $y_n(x)$ of the form
$$
s_n=s_{n,m}(q)+\psi_{n,m}, \qquad y_n(x)=y_{n,m}(q,x)+\Delta y_{n,m}(x)
$$
for any $m=0,1,2,\dots$, where $s_{n,m}(q)$ and $y_{n,m}(q,x)$ are expressed explicitly in terms of the potential $q(x)$. Under the assumption that $q(x)$ is a real summable function, the terms $\psi_{n,m}$ and $\Delta y_{n,m}(x)$ are $O\biggl(\dfrac1{n^{m+1}}\biggr)$ as $n\to\infty$.
Received: 24.12.1998
Citation:
V. A. Vinokurov, V. A. Sadovnichii, “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential”, Izv. Math., 64:4 (2000), 695–754
Linking options:
https://www.mathnet.ru/eng/im295https://doi.org/10.1070/im2000v064n04ABEH000295 https://www.mathnet.ru/eng/im/v64/i4/p47
|
Statistics & downloads: |
Abstract page: | 1155 | Russian version PDF: | 538 | English version PDF: | 33 | References: | 103 | First page: | 3 |
|