Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 4, Pages 695–754
DOI: https://doi.org/10.1070/im2000v064n04ABEH000295
(Mi im295)
 

This article is cited in 36 scientific papers (total in 36 papers)

Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential

V. A. Vinokurov, V. A. Sadovnichiia

a M. V. Lomonosov Moscow State University
References:
Abstract: For the Sturm–Liouville boundary-value problem on a segment we construct asymptotics for $s_n=\sqrt{\lambda_n}$, where $\lambda_n$ are the eigenvalues, and for the normalized eigenfunctions $y_n(x)$ of the form
$$ s_n=s_{n,m}(q)+\psi_{n,m}, \qquad y_n(x)=y_{n,m}(q,x)+\Delta y_{n,m}(x) $$
for any $m=0,1,2,\dots$, where $s_{n,m}(q)$ and $y_{n,m}(q,x)$ are expressed explicitly in terms of the potential $q(x)$. Under the assumption that $q(x)$ is a real summable function, the terms $\psi_{n,m}$ and $\Delta y_{n,m}(x)$ are $O\biggl(\dfrac1{n^{m+1}}\biggr)$ as $n\to\infty$.
Received: 24.12.1998
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: V. A. Vinokurov, V. A. Sadovnichii, “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential”, Izv. Math., 64:4 (2000), 695–754
Citation in format AMSBIB
\Bibitem{VinSad00}
\by V.~A.~Vinokurov, V.~A.~Sadovnichii
\paper Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm--Liouville boundary-value problem on a~segment with a~summable potential
\jour Izv. Math.
\yr 2000
\vol 64
\issue 4
\pages 695--754
\mathnet{http://mi.mathnet.ru//eng/im295}
\crossref{https://doi.org/10.1070/im2000v064n04ABEH000295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794595}
\zmath{https://zbmath.org/?q=an:1001.34021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165984800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746976591}
Linking options:
  • https://www.mathnet.ru/eng/im295
  • https://doi.org/10.1070/im2000v064n04ABEH000295
  • https://www.mathnet.ru/eng/im/v64/i4/p47
  • This publication is cited in the following 36 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1155
    Russian version PDF:538
    English version PDF:33
    References:103
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024