Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 2, Pages 343–361
DOI: https://doi.org/10.1070/im2000v064n02ABEH000286
(Mi im286)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the number of lattice points in three-dimensional solids of revolution

D. A. Popov

M. V. Lomonosov Moscow State University
References:
Abstract: We derive an accurate estimate for the order of magnitude of the remainder term in the problem of the number of lattice points in families of homothetic domains belonging to the class of three-dimensional solids of revolution with smooth boundaries (under certain additional conditions). This estimate is realized in the case of the solid bounded by a standardly embedded torus, for which the second term of the expansion, which describes the dependence of the number of lattice points on the dilation parameter, is written in explicit form.
Received: 29.09.1998
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2000, Volume 64, Issue 2, Pages 121–140
DOI: https://doi.org/10.4213/im286
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: D. A. Popov, “On the number of lattice points in three-dimensional solids of revolution”, Izv. RAN. Ser. Mat., 64:2 (2000), 121–140; Izv. Math., 64:2 (2000), 343–361
Citation in format AMSBIB
\Bibitem{Pop00}
\by D.~A.~Popov
\paper On the number of lattice points in three-dimensional solids of revolution
\jour Izv. RAN. Ser. Mat.
\yr 2000
\vol 64
\issue 2
\pages 121--140
\mathnet{http://mi.mathnet.ru/im286}
\crossref{https://doi.org/10.4213/im286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1770674}
\zmath{https://zbmath.org/?q=an:0966.11044}
\transl
\jour Izv. Math.
\yr 2000
\vol 64
\issue 2
\pages 343--361
\crossref{https://doi.org/10.1070/im2000v064n02ABEH000286}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088572200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746950270}
Linking options:
  • https://www.mathnet.ru/eng/im286
  • https://doi.org/10.1070/im2000v064n02ABEH000286
  • https://www.mathnet.ru/eng/im/v64/i2/p121
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:542
    Russian version PDF:254
    English version PDF:20
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024