Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2000, Volume 64, Issue 1, Pages 35–92
DOI: https://doi.org/10.1070/im2000v064n01ABEH000274
(Mi im274)
 

This article is cited in 5 scientific papers (total in 5 papers)

Tauberian theorem for generalized multiplicative convolutions

Yu. N. Drozhzhinov, B. I. Zavialov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: The following problem is discussed. Let $f$ be a generalized function of slow growth with support on the positive semi-axis, and let $\varphi_k$ be a sequence of “test” functions such that $\varphi_k\to\varphi_0$ as $k\to+\infty$ in some function space. Assume that the following limit exists: $\frac1{\rho(k)}(f(kt),\varphi_k(t))\to c$ where $\rho(k)$ is a regularly varying function. Find conditions under which the limit $\frac1{\rho(k)}(f(kt),\varphi(t))\to c_\varphi$, $k\to+\infty$, exists for all test functions $\varphi$. We state and prove theorems that solve this problem and apply them to the problem of existence of quasi-asymptotics for the solution of an ordinary differential equation with variable coefficients. We prove Abelian and Tauberian theorems for a wide class of integral transformations of distributions, for example, the generalized Stieltjes integral transformation.
Received: 24.06.1999
Bibliographic databases:
Document Type: Article
MSC: 40E05, 32A40, 46F12
Language: English
Original paper language: Russian
Citation: Yu. N. Drozhzhinov, B. I. Zavialov, “Tauberian theorem for generalized multiplicative convolutions”, Izv. Math., 64:1 (2000), 35–92
Citation in format AMSBIB
\Bibitem{DroZav00}
\by Yu.~N.~Drozhzhinov, B.~I.~Zavialov
\paper Tauberian theorem for generalized multiplicative convolutions
\jour Izv. Math.
\yr 2000
\vol 64
\issue 1
\pages 35--92
\mathnet{http://mi.mathnet.ru//eng/im274}
\crossref{https://doi.org/10.1070/im2000v064n01ABEH000274}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1752580}
\zmath{https://zbmath.org/?q=an:0973.46031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087745000002}
\elib{https://elibrary.ru/item.asp?id=13334320}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746966553}
Linking options:
  • https://www.mathnet.ru/eng/im274
  • https://doi.org/10.1070/im2000v064n01ABEH000274
  • https://www.mathnet.ru/eng/im/v64/i1/p37
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024