Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 5, Pages 845–899
DOI: https://doi.org/10.1070/IM2008v072n05ABEH002422
(Mi im2681)
 

This article is cited in 6 scientific papers (total in 6 papers)

The construction of combinatorial manifolds with prescribed sets of links of vertices

A. A. Gaifullin

M. V. Lomonosov Moscow State University
References:
Abstract: To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation $\mathcal{L}$ is the main object of study in this paper. We pose an inversion problem for $\mathcal{L}$ and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin–Schwartz–Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of $\mathcal{L}$. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of $\mathcal{L}$ after passing to a multiple set and adding several pairs of the form $(Z,-Z)$, where $-Z$ is the sphere $Z$ with the orientation reversed. Given any singular simplicial cycle $\xi$ of a space $X$, this construction enables us to find explicitly a combinatorial manifold $M$ and a map $\varphi\colon M\to X$ such that $\varphi_*[M]=r[\xi]$ for some positive integer $r$. The construction is based on resolving singularities of $\xi$. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.
Received: 20.06.2007
Bibliographic databases:
UDC: 515.164.3
MSC: 52B70, 57R95, 55R40
Language: English
Original paper language: Russian
Citation: A. A. Gaifullin, “The construction of combinatorial manifolds with prescribed sets of links of vertices”, Izv. Math., 72:5 (2008), 845–899
Citation in format AMSBIB
\Bibitem{Gai08}
\by A.~A.~Gaifullin
\paper The construction of combinatorial manifolds with prescribed sets of links of vertices
\jour Izv. Math.
\yr 2008
\vol 72
\issue 5
\pages 845--899
\mathnet{http://mi.mathnet.ru//eng/im2681}
\crossref{https://doi.org/10.1070/IM2008v072n05ABEH002422}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473771}
\zmath{https://zbmath.org/?q=an:1156.52009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72..845G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261096200001}
\elib{https://elibrary.ru/item.asp?id=20358650}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-56849122703}
Linking options:
  • https://www.mathnet.ru/eng/im2681
  • https://doi.org/10.1070/IM2008v072n05ABEH002422
  • https://www.mathnet.ru/eng/im/v72/i5/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:987
    Russian version PDF:359
    English version PDF:30
    References:80
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024