Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 2, Pages 319–332
DOI: https://doi.org/10.1070/IM2009v073n02ABEH002448
(Mi im2648)
 

Widths related to pseudo-dimension

Yu. V. Malykhin

M. V. Lomonosov Moscow State University
References:
Abstract: We consider two widths related to the notion of pseudo-dimension. The first is $\rho_n$, which is defined in a similar way to Kolmogorov's width but replacing the linear dimension by the pseudo-dimension. $\rho_n$ can be bounded below by the second width $s_n$, which is half of the length of the maximal edge of the $(n+1)$-dimensional ‘coordinate’ cube inscribed in the given set in a special way. We construct examples of sets for which the ratios $\rho_n/s_n$ (for $n\geqslant 2$) and $\rho_{10n}/s_{9n}$ (for a sufficiently large $n$) are as large as desired. In terms of combinatorial dimension, the main result means that for any $C>0$ and any sufficiently large $n$ there is a set $W$ of dimension $\mathrm{vc}(W,1)\leqslant 9n$ which cannot be approximated with respect to the uniform norm with accuracy $C$ by any set $V$ of dimension $\mathrm{vc}(V,0)\leqslant 10n$.
Keywords: VC-dimension, combinatorial dimension, widths.
Received: 11.04.2007
Bibliographic databases:
UDC: 519.1+517.5
MSC: Primary 41A46; Secondary 54F45
Language: English
Original paper language: Russian
Citation: Yu. V. Malykhin, “Widths related to pseudo-dimension”, Izv. Math., 73:2 (2009), 319–332
Citation in format AMSBIB
\Bibitem{Mal09}
\by Yu.~V.~Malykhin
\paper Widths related to pseudo-dimension
\jour Izv. Math.
\yr 2009
\vol 73
\issue 2
\pages 319--332
\mathnet{http://mi.mathnet.ru//eng/im2648}
\crossref{https://doi.org/10.1070/IM2009v073n02ABEH002448}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2532448}
\zmath{https://zbmath.org/?q=an:1161.41009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73..319M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266177900004}
\elib{https://elibrary.ru/item.asp?id=20425202}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349158535}
Linking options:
  • https://www.mathnet.ru/eng/im2648
  • https://doi.org/10.1070/IM2009v073n02ABEH002448
  • https://www.mathnet.ru/eng/im/v73/i2/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024