Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 1, Pages 31–46
DOI: https://doi.org/10.1070/IM2009v073n01ABEH002437
(Mi im2612)
 

Homogeneous partial differential equations for superpositions of indeterminate functions of several variables

K. Asai

University of Aizu
References:
Abstract: We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or $C^{\rho}$-functions, where the constant $\rho$ is determined by the structure of the superposition. We also prove that the function $u$ defined by $u^n=xu^a+yu^b+zu^c+1$ is generally non-representable in any real (resp. complex) domain as $f\bigl(g(x,y),h(y,z)\bigr)$ with twice differentiable $f$ and differentiable $g$, $h$ (resp. analytic $f$, $g$, $h$).
Keywords: superposition, essentially all PDEs, rooted trees, Hilbert's 13th problem, minors.
Received: 05.02.2007
Bibliographic databases:
UDC: 517.518.28+517.95
Language: English
Original paper language: Russian
Citation: K. Asai, “Homogeneous partial differential equations for superpositions of indeterminate functions of several variables”, Izv. Math., 73:1 (2009), 31–46
Citation in format AMSBIB
\Bibitem{Asa09}
\by K.~Asai
\paper Homogeneous partial differential equations for superpositions of indeterminate functions of several variables
\jour Izv. Math.
\yr 2009
\vol 73
\issue 1
\pages 31--46
\mathnet{http://mi.mathnet.ru//eng/im2612}
\crossref{https://doi.org/10.1070/IM2009v073n01ABEH002437}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503120}
\zmath{https://zbmath.org/?q=an:1183.35083}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73...31A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264628800003}
\elib{https://elibrary.ru/item.asp?id=20358664}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349097874}
Linking options:
  • https://www.mathnet.ru/eng/im2612
  • https://doi.org/10.1070/IM2009v073n01ABEH002437
  • https://www.mathnet.ru/eng/im/v73/i1/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1094
    Russian version PDF:183
    English version PDF:21
    References:61
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024