|
This article is cited in 12 scientific papers (total in 12 papers)
The imbedding of certain classes of functions
V. A. Andrienko
Abstract:
Necessary and sufficient conditions on the modulus of continuity $\omega(\delta)$ are found such that the inclusion $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$ should imply $\psi(x)\sim\psi^*(x)\in H_p^\omega(L^\infty=C)$; sufficient conditions on $\omega(\delta)$ are also found such that $\psi(x)\in H_p^\omega$, $p\in[1,\infty)$, should imply $\psi(x)\in H_q^{\omega^*}$, $p<q<\infty$.
Received: 01.01.1967
Citation:
V. A. Andrienko, “The imbedding of certain classes of functions”, Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967), 1311–1326; Math. USSR-Izv., 1:6 (1967), 1255–1270
Linking options:
https://www.mathnet.ru/eng/im2589https://doi.org/10.1070/IM1967v001n06ABEH000614 https://www.mathnet.ru/eng/im/v31/i6/p1311
|
Statistics & downloads: |
Abstract page: | 358 | Russian version PDF: | 103 | English version PDF: | 19 | References: | 51 | First page: | 2 |
|