Mathematics of the USSR-Izvestiya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Izvestiya, 1967, Volume 1, Issue 6, Pages 1209–1216
DOI: https://doi.org/10.1070/IM1967v001n06ABEH000611
(Mi im2586)
 

Geometries over the algebra of antioctaves

D. B. Persitc
References:
Abstract: We give a rigorous construction for a projective and a noneuclidean geometry over the alternative algebra of antioctaves (split octaves). This construction generalizes Freudenthal's definition of the projective plane over the algebra of octaves (Cayley numbers). It is proved that the groups of automorphisms of the projective and the noneuclidean plane are simple noncompact Lie groups of types $E_6$ and $F_4$, respectively.
Received: 06.07.1966
Russian version:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 1967, Volume 31, Issue 6, Pages 1263–1270
Bibliographic databases:
UDC: 513.78
Language: English
Original paper language: Russian
Citation: D. B. Persitc, “Geometries over the algebra of antioctaves”, Izv. Akad. Nauk SSSR Ser. Mat., 31:6 (1967), 1263–1270; Math. USSR-Izv., 1:6 (1967), 1209–1216
Citation in format AMSBIB
\Bibitem{Per67}
\by D.~B.~Persitc
\paper Geometries over the algebra of antioctaves
\jour Izv. Akad. Nauk SSSR Ser. Mat.
\yr 1967
\vol 31
\issue 6
\pages 1263--1270
\mathnet{http://mi.mathnet.ru/im2586}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=220149}
\zmath{https://zbmath.org/?q=an:0164.20703|0175.47703}
\transl
\jour Math. USSR-Izv.
\yr 1967
\vol 1
\issue 6
\pages 1209--1216
\crossref{https://doi.org/10.1070/IM1967v001n06ABEH000611}
Linking options:
  • https://www.mathnet.ru/eng/im2586
  • https://doi.org/10.1070/IM1967v001n06ABEH000611
  • https://www.mathnet.ru/eng/im/v31/i6/p1263
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Академии наук СССР. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:261
    Russian version PDF:80
    English version PDF:7
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024