|
This article is cited in 14 scientific papers (total in 15 papers)
Commutative rings with a finite number of indecomposable integral
representations
Yu. A. Drozd, A. V. Roiter
Abstract:
The paper answers the question as to the finiteness of the number of nonisomorphic indecomposable integral representations of an arbitrary commutative $Z$-ring.
Received: 07.12.1966
Citation:
Yu. A. Drozd, A. V. Roiter, “Commutative rings with a finite number of indecomposable integral
representations”, Izv. Akad. Nauk SSSR Ser. Mat., 31:4 (1967), 783–798; Math. USSR-Izv., 1:4 (1967), 757–772
Linking options:
https://www.mathnet.ru/eng/im2565https://doi.org/10.1070/IM1967v001n04ABEH000588 https://www.mathnet.ru/eng/im/v31/i4/p783
|
Statistics & downloads: |
Abstract page: | 552 | Russian version PDF: | 131 | English version PDF: | 21 | References: | 54 | First page: | 1 |
|